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This article examines quasiperiodic regimes of formation of a new phase in a meta- 
stable medium; the effect of different rates of removal of phase inclusions on 
phase transformation in a polydisperse system is studied. 

Processes involving the formation of new phases in a metastable medium - crystalliza- 
tion, boiling, condensation - are usually complicated by a whole range of nonlinear factors 
which account for the occurrence of different forms of instability and the establishment of 
oscillatory states. Some of these states were described in [1-4]. The study of unstable 
phase transformations in heterogeneous media with phase inclusions in the form of crystals, 
bubbles, and drops is very important both in a scientific sense and for various commercial 
applications. The problem of the optimum control of nonsteady regimes is especially impor- 
tant [5]. 

The studies [6-10] examine the basic physical mechanism responsible for loss of stabil- 
ity by steady-state processes and the occurrence of oscillations during phase transformations 
in the case where a small role is played by active nuclei of the new phase and the major 
role is played by critical nuclei formed as a result of heterophase fluctuations. The 
effect of parametric oscillations on the kinetics of formation of the new phase in a meta- 
stable medium was investigated in [11, 12]. Here, we attempt to further study parametric 
resonance and the effect of nonlinearities connected with mass transfer between the system 
and environment on the dynamic conditions of phase transformations. For the sake of 
definiteness, below we examine crystallization from supersaturated solutions (the results 
can be readily generalized to the processes mentioned above). 

The mass balance equation for the crystallizing substance is as follows under conditions 
of intensive mixing of the suspension: 

dc _ Q (c) - -  (0 - -  c) - d - /  ~r~ I (t, r)  dr (1)  
dt r, 

( a  s i m i l a r  e q u a t i o n  was w r i t t e n  in  [ 6 - 9 ]  w i t h  t h e  a s s u m p t i o n  t h a t  t h e  volume c o n c e n t r a t i o n  
o f  t h e  new-phase  e l e m e n t s  in  t h e  s u s p e n s i o n  was s m a l l  compared t o  u n i t y ) .  The mass f l u x  Q 
d e s c r i b e s  b o t h  t h e  e n t r y  o f  s u p e r s a t u r a t e d  s o l u t i o n  i n t o  t h e  sy s t em and i t s  e x i t  w i t h  
remova l  o f  t h e  t w o - p h a s e  m i x t u r e .  

With a l l o w a n c e  f o r  f l u c t u a t i o n s  o f  t h e  r a t e  o f  g rowth  o f  t h e  c r y s t a l s  and t h e  boundary  
c o n d i t i o n  f o r  i t ,  we can w r i t e  t h e  k i n e t i c  e q u a t i o n  f o r  t h e  c r y s t a l - s i z e  d i s t r i b u t i o n  f u n c -  
t i o n  in  t h e  form 

0--T + I~ (.) T + '~(r) f = ~ D T ' 

- -  D Of ~- ~ (u) flr=~* = ~ (u), D = O013 (u) 
dr 

( t h e  mean r a t e  o f  g rowth  o f  t h e  c r y s t a l s  f3 and t h e  f r e q u e n c y  o f  n u c l e a t i o n  J may be a r b i -  
t r a r y  f u n c t i o n s  o f  t h e  r e l a t i v e  s u p e r s a t u r a t i o n  u = (c  - c 0 ) / c 0 ) .  I n  d e s c r i b i n g  t h e  e v o l u -  
t i o n  o f  a p o l y d i s p e r s e  ensemble  o f  c r y s t a l s ,  t h e  a u t h o r s  o f  [6,  8, 9] d id  n o t  c o n s i d e r  t h e  
dependence  o f  t h e  r a t e  o f  c r y s t a l  e x t r a c t i o n  on c r y s t a l  d i m e n s i o n s  in  t h e  c o r r e s p o n d i n g  
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Fig. i. Characteristics of neutral 
stability: a) trace of the surface 
of neutral stability in the plane 
St, g; b) period of oscillation on 
the surface of neutral stability for 
the kinetic regime of crystal growth 
(R = i) and Pe = i00: i) ~ = ~o = 
const; 2) y~yo[1--O,lexp(--lO4r)]; 3) y =  
y0[l+0.1exp(--104r)] . 

kinetic equation. This situation reflects an equal probability of removal of crystals of 
any size (i.e. ~ = const); in [7, i0], the fluctuations of crystal growth rate were assumed 
to be negligible (i.e. it was assumed that D = 0). Below, we assume that the kinetics of 
crystal extraction y is described as below 

?( r )  = ?o[1 -{- r ( r ) ] ,  r(r) = r o t .  (r), Irol ~ 1, r ,  ~ 1. 

It should be noted that this case is frequently encountered in practice and corresponds to 
small deviations from ideal mixing of the suspension. In this case, the probabilities of 
the removal of fine and coarse crystals are different (see [3, 13, 14], for example). Then 
the crystal-size distribution function f(t, r) can be represented by a series in powers of 
the small quantity F 0. We obtain the following expressions for the coefficients of this 
series: 

r { (V--r,2} fo(t, r) = 1 . J [ u ( t - - O ) l  exp --?o@ - d@-- 
2 ]/~ "o ] / V  , 4DoV 

' f o (~ -  o, o ) ~ i . ( ~ -  o ) 1 ( v -  ~) s " ( v - , ) ~  
4 ]/~o "[ p.~)2 exp l - -  v~ / dO, 

o 4DoV 

1 ~ f~ (t--  e, o) p [u (t--  e)l (v - -  r) 
f., (t, r )  J V3/2 " X 4 - 1 / - ~ o  o 

where 

t 

x exp {--  o0-- } . 0 _  t I ,r. o, 
4DoV ~ o o 

X exp (--  yoO - -  Dop2V) cos ( p V - -  pr)dpdO, m = 1, 2, 3 . . . . .  (2) 

t 

V = j" ~ [u(z)] dz, 

t--O 

while p is the Fourier transform variable. The unknown fm(t, 0) are successively determined 
by a chain of Volterra equations obtained from (2) with r = 0. Then Eq. (i) reduces to the 
form 

X 

du [i Co -'77, = Q (u) -- 4nl~ (u) (9 -- c) J [u (t -- 0)] exp (-- ?o6)) • 

Jr-DoV ( l ~ e r f - - 2  ~ V 
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Fig. 2. Characteristics of osc i l la to ry  c rys ta l l i za t ion  
regimes: a) dependence of the square of the amplitude q of 
weakly nonlinear oscillations and the frequency shift on the 
degree of criticality g/gO _ 1 at R = i, Pe = I00; b) ampli- 
tude A and frequency w of strongly nonlinear oscillations of 
relative supersaturation U/Us; c) time-averaged degree of 
metastability <U/Us> at St = 0.5: i) y = Yo = const; 2) 
y = y0[1--O,1 exp (--104r)] ; 3) y = y0[l+O,1 exp (--104r)]) ; d)  c o m p a r i s o n  
o f  t h e o r y  ( c u r v e s )  w i t h  e x p e r i m e n t s  [13,  14] ( p o i n t s ) .  

i -+ } + . ,  ire (r - -  O, O) q- r~[m (t - -  O, O) [3 [u (t - -  O)]exp (--  %0) x 
m=l 

{ ( , v)} / - -  $/V exp (-- -- dO-- X DoV 1 + e r f  1 i /  -~-~-)+ 1/~_ 
2 4Do 

i..i. ] r~pexp (-- %@ --DoPZV) cos (pV -- pr) dpdrd@ 
Jl 0 0 0 m--0 

and together with the above chain of equations for fm(t, 0) determines the evolution of the 
degree of metastability and the crystal-size distribution function. At Tot >> i, the upper 
limits of integration in (2-3) and the Volterra equations for fm(t, 0) may approach infinity. 

i. Effect of the Dependence of the Rate of Crystal Extraction on Crystal Size on the 
Neutral Stability of Steady and Amplitude-Dependent Characteristics of Oscillatory Crystal- 
lization Regimes. We used linearized analogs of the evolutionary equations to study the 
neutral stability of steady-state crystallization processes with a constant supersaturation 
and a definite crystal-size distribution. Figure la shows the trace of the surface of 
neutral stability g = F(St, Pe, R), where 

_ _  [ d l n ~  . ~ S t - -  Q(u~) , g = S t u ~  dln_____fg , R = u ~ - -  P e - -  --, 
CogoU ~ du I,=,s du .=us ' Doy o 

in the plane of the parameters St and g for different kinetics of crystal extraction from 
the system. It is not hard to see that an increase in the rate of extraction of larger cry- 
stals stabilizes the system and that the steady-state regime becomes unstable at higher 
Gibbs numbers than those corresponding to the same extraction rate for crystals of arbitrary 
dimensions. Such stabilization can evidently be attributed to the fact that it is the 
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Fig. 3. Characteristics of forced oscillations: a, b, 
c) quasiperiodic oscillations developing from harmonic, 
ultra-, and subharmonic oscillations, respectively; d, 
e, f) oscillations captured by the fundamental, ultra-, 
and subharmonics (R = i, Pe = i00, g/gO _ 1 = 0.05). 

coarser crystals that are capable during growth of producing more substantial fluctuations 
of supersaturation. Their preferential extraction relative to smaller crystals to some 
extent suppresses the instability caused by these fluctuations. A reduction in the rate of 
extraction of the coarse crystals has the opposite effect. A higher (compared to fine cry- 
stals) rate of extraction of coarse crystals leads to a reduction in the period of oscilla- 
tions on the surface of neutral stability (Fig. Ib). 

The dependence of the kinetics of crystal extraction on crystal size has a significant 
effect on the characteristics of nonlinear oscillatory crystallization regimes (small- 
parameter methods similar to those described in [6-8] are used to analyze periodic regimes 
with a small degree of instability, while numerical methods are used with a large degree of 
instability, i.e. in the case of developed nonlinearity). Figure 2 shows the results of 
calculation of the amplitude and frequency of oscillations of supersaturation as functions 
of the degree of instability and the physical and regime parameters of the system. An 
increase in the rate of extraction of coarse crystals is accompanied by a decrease in the 
amplitude of the oscillations (Fig. 2a and b). Here, the time-averaged degree of meta- 
stability also decreases (Fig. 2c). 

The theoretical results were compared with experimental data from [13, 14] on the cry- 
stallization of potassium chloride in the kinetic regime of crystal growth; the character- 
istic parameters had the following values: St = 0.91; (g - g~176 = 0.09; 

{ 1,471.10-~ see -I r < O , 5 . 1 0 - ~ m  , 

7 ( r ) =  9,748"10 -s see -1 0,5"lO-~m < r < 3 . 1 0 - ~ m ,  
1,799.10 -~ sec -1 r > 3 - 1 0 - ~  m. 

The frequency of nucleation was described by the Maier formula. Figure 2d shows the satis- 
factory agreement between the theoretical and experimental findings. 

Thus, the kinetics of crystal extraction from the metastable zone, with allowance for 
the probability of the removal of crystals of different sizes, can be used effectively to 
stabilize unstable regimes and control oscillatory processes. 

2. Quasiperiodic Crystallization Regimes. As was shown in [ii, 12], the presence of 
significant nonlinearities in the system in question makes the use of parametric modulation 
an effective method of controlling the process. Thus, in a certain interval of modulation 
characteristics, periodic parametric modulation (modulation of the Stanton number, corres- 
ponding to the periodic rate of delivery of the crystallizing substance to the system or the 
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Fig. 4. Regions of capture of the 
natural frequency with modulation of 
the parameter St: St = 0.5(l+• 

~=yot, Ql=2,  Q2=l,  Pe='lOO, R = l , g / g ~  

rate of removal of elements of the new phase F) leads to stabilization of unstable steady- 
state regimes [ii]. In new regions of instability of artificially stabilized regimes, such 
modulation results in synchronization of the natural frequency of the oscillations with the 
external frequency. After modulation, the oscillation frequency may coincide with the 
forcing frequency in a certain frequency range that is sufficiently close to the natural 
frequency (harmonic capture of the natural frequency by the external frequency). Capture 
of the natural frequency also occurs when the ratio of the oscillatory and external frequen- 
cies are close to an integer different than unity. In this case, the natural frequency is 
captured by an ultra- or subharmonic [12]. 

The evolution of the captured oscillations in the transition across the boundary of 
the frequency synchronization regions was studied numerically on the basis of nonlinear 
equation (3) for supersaturation in conjunction with a system of equations for the unknowns 
fm(t, 0); as in [12], we used the Aitken--Stephensen method. The results obtained show that 
if the external frequency corresponds to a point located between capture regions, nearly 
periodic oscillations will develop in the system. In contrast to harmonic, ultraharmonic, 
and subharmonic oscillations (when the period of the captured oscillations is an integral 
number of times greater or less than the period of modulation), these oscillations are not 
strictly periodic, since their amplitude and phase undergo a weakly periodic change (even 
in the steady-state regime) and the form of the curve is generally not repeated. Also, the 
ratio of the period of amplitude change and the modulation period in quasiperiodic regimes 
is expressed by an irrational number. Figure 3a-c shows characteristic cycles of quasiperi- 
odic oscillations that develop from harmonic, ultraharmonic, and subharmonic oscillations 
with crossing of the boundary of the capture region. The duration of a complete oscillation 
cycle for the oscillations in Fig. 3a-c is 5.4, 2.9, and 10.4 of the period of parametric 
modulation, respectively. For comparison, Fig. 3d-f shows the modes of oscillations cap- 
tured by the fundamental, ultra-, and subharmonic. It is not hard to see that the behavior 
of the system is qualitatively different in quasiperiodic regimes and the case of frequency 
synchronizat ion. 

3. Suppression of Subharmonic Oscillations by a Nonlinear Source Function. Synchroniza- 
tion of the frequency of oscillations with an external frequency may be undesirable from a 
technical standpoint. Under these conditions, the problem of suppressing capture of the 
natural frequency becomes very important. Analysis shows that an effective means of suppres- 
sing synchronization is the introduction of a mass flow which is nonlinear with respect to 
supersaturation. Thus, under conditions of modulation of the parameter St, a mass flow of 
the type 

Q (u)  �9 = Q~ _ Q~u~ 
Q(u~) 

eliminates capture regions of the order 1/2, 1/4, 1/6 .... and leads to a substantial con- 
traction of synchronization regions of the order 1/3, 1/5, i/7,... (Fig. 4). 

NOTATION 

c, concentration of dissolved substance; Co, saturation concentration; D, coefficient 
expressing the fluctuation of crystal growth rate; Do, kinetic proportionality factor 
linking the mean and fluctuation components of crystal growth rate; f(t, r), crystal-size 
distribution function; fm(t, r), coefficients of the series expansion of f(t, r); g, product 
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of the Stanton and Gibbs numbers; Pc, fluctuation value of the Peclet number, characterizing 
the ratio of the mean and fluctuation components of crystal growth rate; p, Fourier trans- 
form variable; Q, mass flux; r, r,, radii of crystal and critical nucleus; t, time; u, dimen- 
sionless supersaturation; V, function introduced in (2); St, Stanton number; 6, mean rate of 
crystal growth; y(r), rate of crystal extraction; ~0, F0, F,, coefficients pertaining to 
7(r); P, density of crystal; e, frequency of oscillation. The subscript s denotes quanti- 
ties corresponding to the steady-state regime of crystallization; the superscript ~ denotes 
values on the surface of neutral stability; the index a denotes that a quantity pertains to 
the natural frequency of oscillation; an asterisk denotes averaging over the ensemble; 
brackets denote averaging over time. 
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OPTICAL AND RADIANT CHARACTERISTICS OF 

TUNGSTEN AT HIGH TEMPERATURES 

S. N. Ivashov and A. I. Fisenko UDC 535.338.1 

It is proposed that thermal radiation spectra of solid materials at high temper- 
atures be treated by the method of moments. 

Extensive experimental data have been accumulated on radiant and optical characteris- 
tics of solid materials at high temperatures [1-3]. However, the problem of the theoreti- 
cal treatment of radiant spectra and the related determination of the frequency--temperature 
dependencies of optical constants is still open today. In the present study, a method is 
offered that allows one to recreate the radiant spectra from the integral characteristics 
of the system. The given method has been tested on tungsten. From the generalized Wien 
displacement law, we determine the temperature for the material under investigation. The 
calculated values reproduce well the measurement results. 

In [4], it is proposed that the absorption spectra be treated by the method of moments. 
It has been shown that if the experimental outline is a smooth function then it is well 
reproduced by the asymptotic Edgeworth series. In the present work, a similar method was 
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